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Abstract- The stability of natural convection in a thin, horizontal layer subjected to horizontal as well 
as vertical temperature gradients is investigated on the basis of linear theory. The boundaries are taken 
to be stress-free and perfectly conducting and the horizontal temperature gradient is assumed to be small. 
The analysis shows that the critical Rayleigh number is always larger than that for the ordinary Btnard 
problem. The preferred mode of disturbance is stationary, and will be a transverse roll (having axes 
normal to the basic flow) or a longitudinal roll (having axes aligned in the direction of the basic flow) 
depending on whether the Prandtl number is less or larger than 5.1. Finally, some calculations are made 
of the converted energy associated with the unstable perturbations, indicating that the mechanism of 

instability is of thermal (convective) origin. 
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NOMENCLATURE 

depth of layer ; 
wave numbers in the x and z 
direction ; 
unit vectors ; 
velocity vector ; 
velocity components ; 
time ; 

temperatures ; 
thermal diffusivity ; 
kinematic viscosity ; 
density ; 

standard density ; 
amplification factor of disturbance ; 
defined by (4.9) and (4.27), respec- 
tively. 

basic flow velocity ; 
pressure ; Superscripts 
basic flow pressure ; 

I non-dimensional quantities ; 
temperature ; perturbation quantities. 
standard temperature ; 
temperature difference between lower 
and upper plane; 
Laplacian operator ; 
operator defined by (4.3) ; 
defined by (5.2)and (5.6), respectively ; 
Prandtl number V/IC ; 
Rayleigh number gEATd3/lcv 

1. INTRODUCl’ION 

(g = acceleration of gravity, 
E = coefficient of volume expansion). 

THERMAL convection in thin, horizontal fluid 
layers uniformly heated from below is quite well 
described in the literature (the BCnard problem) ; 
see the review article by Brindley [l] for 
references. In many practical problems, however, 
non-uniformly heating may occur, and thus the 
layer will be subjected to horizontal as well as 
vertical temperature variations. Few theoretical 
attempts have been made to analyse the stability 
of thin layers under such conditions. Zierep [2] 
has approached the problem by investigating a 
model with a discontinuous jump in the bottom 
temperature. Further, Koschmieder [3] has 

Greek letters 
overall wave number ; 
horizontal temperature gradient ; 
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performed a laboratory experiment on con- 
vection between circular planes, the upper at 
constant temperature, the lower non-uniformly 
heated. At subcritical conditions a density 
gradient roll was observed, breaking up into 
axially symmetric rolls of different sizes and 
rotation when the vertical temperature difference 
was sufficiently increased. Theoretically Mtiller 
[4] has given a two-Dimensions linear analysis 
of this problem. A closely similar experiment 
in a rectangular cavity has been reported by 
Berkovsky and Fertman [5]. 

In the present paper we investigate the effect 
of horizontal temperature variation on ordinary 
Benard convection, assuming that the fluid is 
unlimited in the lateral directions. Due to the 
horizontal density gradient thus produced, a 
shear flow develops. and when the temperature 
difference between the bottom and top plane 
exceeds a certain critical value, this flow becomes 
unstable. 

It is well known that in the absence of shear, 
a non-linear analysis must be applied to obtain 
the final flow structure, being two-dimensional 
rolls if the fluid properties are constant (Schltiter 
et al. [6]), or hexagons if the properties vary with 
temperature (Palm [7], Segel and Stuart [S], 
Busse [9]). 

In stability problems involving a basic flow, 
a preferred direction is introduced into the 
system, and a unique flow pattern may be 
predicted from linear theory (Liang and Acrivos 
[lo]). The selected type of disturbance will 
depend on the instability mechanisms involved. 
For non-stratified shear flows, the mechanism 
is purely hydrodynamical, and by Squire’s 
theorem it can be proved that instability first 
occurs for rolls having axes normal to the mean 
flow (transverse rolls). For shear flow with 
unstable vertical stratification due to heating 
from below, the instability will be of thermal 
origin if the basic flow Reynolds number is 
sufficiently small, and then rolls having axes 
aligned in the direction of the mean flow 
(longitudinal rolls) will be preferred [lO-121. 

In the present problem we shall assume a 

small horizontal temperature variation which 
implies a small basic flow velocity. For moderate 
for large) Prandtl numbers then, the hydro- 
dynamical instability mechanism will not 
seriously affect the problem and thermal instabi- 
lity will dominate. Hence longitudinal rolls 
would be expected. It is therefore a little sur- 
prising, at least to the author, that the final flow 
pattern may be transverse or lon~tudinal rolls 
depending on whether the Prandtl number is 
smaller or larger than 5 1. 

The reason for this, however, is purely of 
thermal origin. This is indicated in the last part 
of the paper where we consider the conversion 
of energy between the mean flow and the 
perturbation. There we show that the horizontal 
transfer of vertical momentum cannot account 
for the change of mode about Pr = 5.1, while the 
release of potential energy may do so. 

2. BASIC FLOW 

Consider natural three-dimentional con- 
vection of a viscous fluid confined between 
horizontal planes, see Fig. 1. For mathematical 
simplicity we shall assume the planes to be 
stress-free and perfectly conducting, and the 
lateral temperature variation to be linear in the 
x-direction. For a given x-coordinate, the 
temperature difference between the planes is 
constant, AT, and the lower plane is the warmer. 
We then may write T = T, - AT/Z - /Ix and 
T = To + AT!2 - j3x at the top and bottom 
plane, respectively, where /? is a positive con- 
stant. 

To avoid infinite temperatures on the 
boundaries, we must limit the model in the 
x-direction, but we assume that the ratio of the 
depth to the characteristic horizontal dimension 
is so small that the lateral boundaries will not 
affect the motion. 

Introducing non-dimensional (primed) quan- 
tities by 

(x, y, z) = tx’, y’, z’) d, 
d2 

t =t’-- 
ti 
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A 

' T=T,-hT12- PX 

and to the continuity condition 

f 
d ,I-x 

$J(Y)dY= 0. (2.7) 

4 /Z 
T=T,+AT12 -pX 

The solution of this system is easily obtained, 
being 

FIG. 1. The coordinate system 

(u, 11, w) = (u’, II’, w’) $ , p+e!g 

T- T0 = T’AT 

and making the Boussinesq approximation, we 
write the governing equations in vector notation 

aT 
tfv.VT =V2T 

V.v=O 

where the primes have been dropped. 
We now consider a particular solution of 

these equations. Setting 

-y. (2.8) 

For sufficiently large values of Ra (or fi), the 
solution (2.8) may become unstable, and this 
possibility is investigated in the next sections. 

It is worth pointing out that this type of flow 
is solely caused by a horizontal density gradient, 
and exists even when no vertical temperature 
difference is present (AT = 0). This is easily seen 

(2.2) 
by writing (2.8) in dimensional form setting 
AT= 0. 

(2.3) 
3. STABILITY ANALYSIS 

a 
;;f=v=w=O 

Following the usual approach of linear 
stability theory, infinitesimal perturbations (de- 
noted by carets) are introduced into the govern- 
ing equations. Setting 

u = WY) (2.4) 

T= T(y) - fix 

where /I now is dimensionless, and eliminating 
the pressure from (2.1), the governing equations 
reduce to 

D3U(y) = - /?Ra 

D’T(y) = - ,‘3U (2.5) 

where 

D=$ 

These are subject to the boundary conditions 

DU( f $) = 0, T( _+$) = r+ (2.6) 
Pr-’ (g+ u(y)g)= -$+vw 

2.4 = U(y) + 2(x, y, z. t), 1) = ?(x, y, z, t), 

w = lqx, y, z, t) (3.1) 

8 = T(Y) - b’x + b, y, z, t), 

p = n-T v) + 8x7 _v. z, t) 

and neglecting the non-linear terms, we obtain : 
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; + U(Y); - flu + II DT(y) = V% (3.3) 

au+2+M?=o 
aX ay a2 

where the carets have been dropped. 
We assume solutions of the form 

bl h(Y)1 

(3.4) 

exp (i(kx + mz - ot)) (3.5) 

for the system (3.2H3.4), where the real part is 
considered to have physical significance. The 
wave numbers, k and m, are real and the growth 
rate a( = o’ + io’) is complex. Eliminating the 
pressure from (3.2) and utilizing (3.5), we 
finally obtain 
{Pr(D’ - 01~) - ik/3Rao + ia} (D2 - a’) 

x v + ik/?RaD2uo - a2PrRa0 = 0 (3.6) 

{D” - a2 - ikfiRaU + io) 0 + pu 

+ ZJ - /J’RazlDB = 0 (3.7) 

{Pr(D’ - a2) - ik/IRaU + ia) 

x (- a2u + ikDv) + m2PRaD80 = 0 (3.8) 

subject to the boundary conditions 

ii = D2r, = Du = 8 = 0 for y= It+ 

(3.9) 

(for a more detailed derivation of these con- 
ditions, see [13]). Here a is the overall wave 
number defined by a2 E k2 + m2. Furthermore, 
we have introduced 

(3.10) 

Equation (3.6) is the Orr-Somerfeld equation 
which is coupled with the energy equation (3.7). 
Equation (3.8) is the vertical component of the 
vorticity equation combined with the equation 
of continuity. Except for the last equation, this 

set has much in common with the one treated 
by Gill and Davey [14]. 

4. METHOD OF SOLUTION 

To simplify the problem we shall assume that 
j? is small. Then the equations (3.6)-3.8) may be 
solved by a perturbation technique using fl as a 
small perturbation quantity. This is a method 
similar to that introduced in [lo]. The solutions 
are expanded into the form 

(u9t~J,k,m,a,Ra) = (u0,110,e0,k0,m0,(70RO) 

+ B(u,,u,,B,,k,,m,,a,,R,) (4.1 

+ 82(u2,U2,e2,k2,m2,(72,R2)+ 

. . . . . . 

where R, k, m, i = 0, 1, 2, 3 . . . . are real 
quantities and ui, I)~, Qi, bi generally are complex. 

The different orders are obtained by in- 
serting these expressions into (3.6)-(3.8), equat- 
ing equal powers of /I and utilizing the solvability 
condition. For this procedure to be valid, the 
Prandtl number must be a zeroth-order 
quantity. 

The zeroth-order system corresponds to 
thermal convection without shear (the Benard 
problem), and the equations are 
{Pr(D’ - a:) + iao}(D2 - a&, - aiPrR,B, 

Z-Z 0 

{D2 - ai + ia,] B. + 11~ 

= 0 (4.2) 

-a& + ikoDu, 

=o. 

It is well known [13] that the principle of 
exchange of stabilities is valid for this system. 
Hence d, = 0. At the neutral state (c& = 0), 
the governing equation may be stated 

L(i>,) = {(D’ - a$” + a;R,} u. = 0. (4.3) 

From (3.9) and (4.2) the boundary con- 
ditions may be written. 

u0 = D%, = D4u, = 0, Y= +3 (4.4) 
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The solutions are readily obtained, being 

l+J = Acosny 

2k, u0 = -i-Asinrry 
lt 

(4.5) 

e. = $Acosny 

and 

The amplitude A, which can not be deter- 
mined from the linear, homogeneous system, 
may be equated to unity without loss of gener- 
ality. 

Next, for the first-order equations we obtain 

Pr(D’ - ai)2z11 - agPrR,,B, 

= {2@‘r(D2 -a:) 

+ ik,R,( u(D2 -a:) - DZ g) 

-ic~,(D’ - a;)> u. + {[PrR, + a;PrR,} 8, 

(4.6) 

(D2 - a;) B1 + 11~ = {< + ik,RoU - ia,} 

x el) - ug (4.7) 

Pr(D’ - a$ (- C&Q + ik,Da,} 

= - Pr(D2 - a;) (- 5uo + ik,Dv,) 

- m~R,D~v, (4.8) 

+ aiPrR,< + ik,aiPrR,$i? - iala~PrRo} 

x tile - aiPrR,u, (4.10) 

subject to the boundary conditions 

11~ = D2u, = D4u, = ‘, y= i-i. (4.11) 

The operator L has been defined by (4.3). 
Under the present conditions, Lis easily seen 

to be self-adjoint. Then a necessary condition 
for (4.10) to have a solution is that the right hand 
side be orthogonal to 11~. 

Defining the inner-product 

(f,s> = j$sdy (4.12) 

the condition for solvability may be stated as 

(I+,), 00) = 0. (4.13) 

From (4.13) we obtain 

RI = - io,F(l +Pr-‘). (4.14) 

Since R, must be purely real, this equation gives 
at the marginal state (ai = 0) 

0; = 0 

RI =O. (4.15) 

Thus we have no oscillatory instability to first 
order. Concerning the Rayleigh number, it is 
clear from physical considerations that Ra 
generally can not contain any term involving 
odd powers of p, since the only effect of changing 
sign in 8, is to reverse the basic velocity, which 
of course can not alter the stability conditions. 

where 

< = 2(kokl + mom,). 

Eliminating e1 from (4.6) by 
finally get 

Hence 

(4.9) &,+I = 0, n = 0,1,2 )...... (4.16) 

using (4.7), we 
For the sake of simplicity, we shall represent 

the basic velocity by a sine-profile, which is 
indeed a good approximation. This may be seen 

PrLJvI) = (2<Pr(D2 - a:)” + ikoRo(D2 - a$ from Table 1, where the difference between 

x [u(D2 - a;) - D’v] - ia,(D’ - a$‘}u, 
the sine-profile 0, = +4 sin 7~ y and the exact 
profile 0, = + (y/4 - y3/3) is given in per cent 

+ {5PrRo(D2 - ai) + agPrR,(D2 - a$ for several values of y. 
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Table 1. Difference between ‘il, and u, 
- 

P 0 01 o-2 o,?; 0‘4 0.5 
Difference in Y; 0 4.2 3-4 2.1 0.7 0 
I__ -.- 

Throughout the remainder of this analysis, 
we then take as basic velocity 

U(y) = $!$sinny. (4.17) 

The corresponding basic temperature is ob- 
tained from (2.Q being 

T(Y) = g (-yf+sin ny)-y==@(y)-y. 

(4.18) 

Introducing !? z U/(3Ra and 0 = 0/f12Rn into 
(4.10) and utilizing RI = cl = 0, we get 
L(q) = skirt (&x4(1 f Pr-‘) sin 2ny 

+ n sin ny> (4.19) 

with boundary conditions til = D2n, = D4n, = 
= 0, y = f +. 
Setting 

r)l = ik,R,& x4(1 -I- Pr-‘)iY, + ikoR&,. 

(4.20) 

cl is immediately obtained, while v”i is found 
most conveniently by Galerkin’s method, giving 

iii = f AZ,, sin 2n7cy (4.21) 
n=l 

where 

A,, = 
64n(- 1)” 

x7(4$ - 1) [(8n2 + 1)3 - 271. 

The solution of (4.19) may then be written 

‘11 = ik, ( - g4(I -t- Pr-‘) sin 27cy f nR,Z,]. 

(4.22) 

From (4.7) and (4.8) we now obtain the solutions 
for %1 and ui, namely, 

8 ik, - (27 + Pr- 
1 

= 

32.39 
‘1 sin 2 ny 

4 4 sinh(nyiJ2) 
- 

3n3 
sin 7ry -4 

7 3n smh(n/2 . J2) 

+S! 8, 4 
--_r cos 7ry 

97x4 
(4.23) 

7c 

where 

CO 

and 

x cos 27Ly - : 4i 
R RODE, i- g 

xc;: 1 
x2 9nPr - l 
2 kl sin zy-Fm$. 

(4.24) 

Here Cl is defined by (4.21). 

To determine R, and c2, we must apply the 
solvability condition to the second-order equa- 
tions. These are given by 
Pv((D2 - IX;>“Z~, - a;R,%,f = {2Pr5j(D2 - c& 

-t- ik,R,[ u(D2 - u.f) - D2U-J)t1, + @‘rR,%, 

+ 

X 

and 

UJ2 - a:)%, f IQ = (S: + ik,R,iT)Q, - u1 

-t (ik~R~~ f [ - ia2)%0 + R,,D&,, 

where 

[ = kf + 2kokz -t ~2: + 2m,m,. 

(4.25) 

(4.26) 

(4.27) 

The equation for u2 is not relevant for the present 
purpose, and is thus not stated. 

We now multiply (4.25) and (4.26) by (D2 - 
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c& and LX: PrR,, respectively, summing and take 
the innerproduct with uO. The solvability con- 
dition for this system is then expressed by 

CW,), rJo> = 0. (4.28) 

After some algebra we obtain from (4.28) 

R,=+R,+$ 8-8.13C,+16 
. [ 

817C4 

217c4 
mPr-2 kg 1 

+ i R,Pr-‘nli + 36(k,k, + i~~rnr)~ 

- io,? (1 + Pr-‘), 

where 

&= f 
2.27.64n2 

R = r n 4(4n2 - 1)2[(8n2 + 1)3 - 273 

This series converges very rapidly, 
approximately 

X1 = 5.63.10-3. 

(4.29) 

(4.30) 

giving 

(4.31) 

At the neutral state, g2 must be real. Since R, 
is real, the real and imaginary parts of equation 
(4.29) reduce, respectively, to 

21n5 

+ 16.32 
PF2 1 k$ + 7 R,Pr- ‘rng 

3 

+ 36(k,k, + momI) (4.32) 

and 

o;y(l + Pr-‘)= 0. (4.33) 

The last relation implies that cr> = 0 at the 
marginal state, and hence we have no oscillatory 
instability to second order. 

From (4.32) we immediately conclude that 

R, is positive and greater than zero for all kinds 
of disturbances, which means that the onset of 
convection in the present problem will occur 
for a Rayleigh number larger than the critical 
value corresponding to the Benard problem. 
This is to be expected since the basic flow 
convects warmer fluid in the upper part of the 
layer and colder in the lower part, thus opposing 
the destabilizing effect of the temperature 
difference between the lower and upper plane. 

The preferred mode of disturbance will make 
R, a minimum. If we introduce h = m,/k, and 
utilize kg + m$ = n2/2, R, may be written 

R,(h) = 3/16n2R, + {A(Pr-I, PF2) + B(Pr-‘) 

x h2 + 36(k, + m,h)‘) 
nL 

2(1 + h2) 
(4.34) 

where the expressions for A and B easily follow 
from (4.32). 

It is then seen that R, has an absolute mini- 
mum either for h = 0, kl = 0 (transverse rolls) 
or h = co, ml = 0 (longitudinal rolls) depending 
on the values of A and B, i.e. the Prandtl number. 

In Fig. 2, R, is displayed for the two kinds of 

\Longitudinal roll ( 

I 1 

5 
Pr ‘O 

15 

FIG. 2. Rz = (Ra - R&p2 vs Pr for transverse and 
longitudinal rolls. 
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rolls, and we observe that for Pr < 5.1 trans- conversion of potential energy to kinetic energy 
verse rolls are preferred, while we get longitudinal and viscous dissipation, respectively. 
rolls when Pr > 5.1. We define 

It should be noted that formally (4.32) also 
gives one more point of intersection between 
the transverse and longitudinal roll curves, 
namely for Pr = GO3. Whether this reflects any 
real change of mode, however, is doubtful, since 
our perturbation method is not supposed to be 
valid at such a small Prandtl number. In fact, we 
suggest that the tendency to select transverse 
rolls will be strengthened at small Pr by the 
increased importance of shear on the mechanism 
of instability. 

K--(DUG). (5.2) 

Here uti = 3[u’(y)t)‘(y) + ui(y)z~‘(y)] where the 
superscripts r and i denote real and imaginary 
parts of the velocities defined by (3.5). 

We will consider the marginal stable solutions. 
Since the solution denoted by subscript zero 
corresponds to pure convection, it is obvious 
that uOrj,, = 0. The lowest order contribution to 
the Reynolds stresses is then given by 

-- 

When Pr increases towards infinity, the 
critical Rayleigh number assumes the asymp- 
totic value 

G = fi(141V0 + U&) + 0(/J?). (5.3) 

For the expression (5.2) we then obtain to 
second order 

Rn = R,(l + l+) + O(P”). (4.35) 

5. EXCHANGE OF ENERGY BETWEEN THE MEAN 
FLOW AND THE PERTURBATION 

In this section we shall be concerned with the 
perturbation energy. Taking the real parts of 
the component equations in (3.2), multiplying 
by the real parts of u, z) and w, respectively, 
averaging over a wavelength in the x- and z- 
direction, adding, and integrating from y = -f 
to y = +f, using the boundary conditions, we 
finally obtain the familiar equation for the 
kinetic energy of the perturbation 

+ PrRa(zJ) - Pr((vu)2 + (vi)2 

+ (vw)2> (5.1) 

where the bars and the brackets denote mean 
and vertical integrations, respectively. 

Here the term -(DUE) represents the 
conversion of kinetic energy between the per- 
turbation and the mean flow through vertical 
transfer of horizontal momentum while the 
second and third term on the right represent 

and 

K = - 3.6(1.6 + Pr- ‘)/I” (5.4) 

K = 198.1 Pr-‘/12 (5.5) 

for transverse and longitudinal rolls, respectively. 
Accordingly, transverse rolls always lose kinetic 
energy to the mean flow, while longitudinal rolls 
always gain energy. Similar results were obtained 
by Asai [15] for convection in Couette flow, 
from which it was concluded that longitudinal 
rolls were preferred. 

In the present problem a similar conclusion 
is obviously incorrect. The fastest growing mode 
will depend on the conversion of potential 
energy as well as viscous dissipation. This 
dependence will not fully be explored in this 
paper. At large Prandtl numbers, however, it is 
immediately clear from the equation for the 
kinetic energy (5.1) that the processes mentioned 
above will dominate. For Pr of about unity, we 
shall consider one important second order term 
of the released potential energy. 

We define 

P G PrR, ~(v~O,)~~ = & PrR2fi2 (5.6) 

where R, is given by (4.32). 
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From the graph of R, in Fig. 2 it follows that 
the value of P for transverse rolls will be less 
than its value for longitudinal rolls when Pr 
is less than five, while for Pr greater than live 
the opposite is true. Further it can be shown that 
for Pr = 5 the release of potential energy (P) 
for a longitudinal roll is about six times larger 
than the energy converted from the mean flow 
through vertical momentum transfer. This indi- 
cates that the process of conversion of potential 
energy will dominate for Pr about unity, and 
may account for the change of mode at Pr = 5.1. 
Since we consider marginally stable solutions, 
the left hand side of (5.1) is zero. To satisfy this 
condition, the viscous dissipation must also be 
important for Pr of about unity. 

6. SUMMARY AND DISCUSSION 

When the Prandtl number is less than 5.1, 
we find that the Rayleigh number at the neutral 
state has a minimum for steady. transverse rolls, 
i.e. rolls with axes normal to the mean flow. For 
Prandtl numbers greater than 5.1, the Rayleigh 
number is smallest for steady, longitudinal rolls 
having axes aligned in the direction of the mean 
flow. 

Our conclusions are, in some respects, similar 
to those reached by Liang and Acrivos [lo] for 
convection in a tilted slot. As in the present case, 
the neutral state remains stationary for all 
disturbance wave numbers, i.e. the principle of 
exchange of stabilities applies, and the critical 
Rayleigh number decreases with increasing Pr 
to an asymptotic value independent of Pr. In 
the present problem this limit is given by (4.35). 

Two important differences may be noted, 
however. In [lo] the most unstable mode was 
found to be a longitudinal roll, and the critical 
Rayleigh number the same as for pure con- 
vection without shear. In our case, the most 
unstable mode may be either transverse or 
longitudinal depending on whether Pr is smaller 
than 5-l or not. The critical Rayleigh number 
will always be larger than that corresponding 
to convection without horizontal density 

gradients. Physically this is due to the upward 
convection of warm fluid and downward con- 
vection of cold fluid in the basic flow. 

The last section has been devoted to energy 
considerations. We have shown that, analogous 
to [15], a longitudinal roll always gains kinetic 
energy from the mean flow through vertical 
transfer of horizontal momentum, while a 
transverse roll always loses energy by this process. 
This does not explain the change of mode at 
Pr = 5.1 in the present problem. By computing 
one particular term in the released potential 
energy, it is indicated that the mechanism of 
instability is primarily of convective origin. 
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CONVECTION TIlFKMIQUE ENTRE DES PLANS CHAUFFES NON UNIFORMEMENT 

RhsumC-On a &die sur la base dune thtorie lineaire la stabilite de la convection naturelle dans une 
mince couche horizontale soumise a des gradients de temperature aussi bien horizontaux que verticaux. 
Les limites sont sans contrainte et parfaitement conductrices et le gradient de temperature horizontal est 
suppose petit. L’analyse montre que le nombre critique de Rayleigb est toujours plus grand que celui du 
probltme classique de Benard. Le= mode prtfere de perturbation est stationnaire et sera un rouleau trans- 

versal (avec axe normal a l’tcoulement fondamental) ou un rouleau longitudinal (avec un axe dans la 
direction de l’tcoulement fondamental) selon que le nombre de Prandtl est infirieur ou superieur a 5,l. 
Finalement, on a fait quelques calculs sur i’energie convertie associte aux perturbations instables et qui 

indiquent que le mecanisme d’instabilite est d’origine thermique (par convection). 

tijBR~ -rH~Rmxm KONVEKTION ZWISCHEN uNOLEI~HM;~SSIO BEHEIZTEN PLATTEN 

Zusammenfassung-Die Stabilitlt der natiirlichen Konvektion in einer dtinnen, horizontalen Schicht, 
die sowohl vom horizontalen als such vom vertikalen Temperaturgradienten abhangig ist, wird auf der 
Basis der linearen Theorie untersucht. 

Die Grenzen werden so gewahlt, dass sie spannungsfrei und vollkommen leitend sind; vom horizontalen 
Temperaturgradienten wird vorausgesetzt. dass er klein ist. Die Analyse zeigt. dass die kritische Rayleigh- 
Zahl immer grosser ist als die fur das gewohnliche Benard-Problem. Die bevorzugte Stiirungsart ist 
stationir; sie wird ein Querwirbel (Achsen senkrecht zur Grundstromung) oder ein Langswirbel (Achsen 
in Richtung der Grundstromung) sein, je nach dem die Prandt-Zahl kleiner oder grosser 5,l ist. Schliesslich 
werden einige Berechnungen fur die tibertragene Energie angestellt, die mit den instabilen Storungen 
verknupft ist. Das gibt den Hinweis. dass der Mechanismus der lnstabilitlt von thermischem (konvektivem) 

Ursprung ist. 

hiHOTal(HlI--fh OCIIOBC JIkIlICiiHOii T’O~JIIII IlCl’:I?~yeTCH yCTOiiYIIBOCTb CCTCCTIWHIiOfi 

KOHneKuIlII I3 TOHIFOM r0p1130HT3jIbHIJM CjIOe, IlOnsepraCMOM HO3~I?iiCTBIlH) rOpIiaOHTaJIbHbIX, 

a TaIEHEI-2 BepTIlIiaZIbHLIX rpa~lICHTOB TC,Mlle~JaTy~JbI. &,llHfITO, ‘ITO Hanpnltteuue ~a rpanuuax 
OTCyTCTByeT, I’paHIInbI 06na~aIoT COBCpnICHHOn TCnJIOnpOBO~HOCTblO Cl I’OpIlnOHT&iIbHbIti 

TeixnepaTypHbIB rpanIIeHT fan. II~T&M anannaa noiraaaao. 9~0 IFpIITIIsecboe anaqenue ~tnc;Ia 
Penen ricer;;;; Fonbme :ura~euun xnrr 06bI’Inoil naaalru Eeuap;ra. I/I:3 cnocoflon norlMyureunn 
nbI6paII CTauIIOHapHbIii, II B 3aBIICIIMOCTII OT TOrO, 6Onbme II.~II I\lpubIIIe 5,l auaqeHue wcna 

npaH~TJIfI, IlCTOYHIiKOM BOaMyLnCHIIFI C.IIyiiiaT IlOnPI_WIHbIC (C OCFIMII, paCllOnOifEeHHbIMIl 

nepIleH~IiKy.7lnpHO Ii OCHOBnOMy IfOTOIiy) 1IJIIl IlJ~O~[~~bHLIC BIIX[‘II (C, OCRMII, IIan~aBJICIIHbIMII 

II~O.Ib 0C~0un0r0 noToba). Hauoneq, RbIllO.TJH?HbI HeHOTonLIe pwIBTb1 Or,paII&eHHOii n!IeprIrII, 

CBHaaHHOii C IICvCTOit~IIBbIMIi BO3NymeHIIflMI1, IiOTO[‘J>n? IlOKR:IbIB’IK)T < , CITO MPXBHIIBM 

HCyCTOil’IIIBOCTII IIMWT Trp>IWIeC’JiOt? (JC~H~Y’KTI~~FJO~) npOCl~‘XO~~?“HIIe, 


