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Abstract— The stability of natural convection in a thin, horizontal layer subjected to horizontal as well
as vertical temperature gradients is investigated on the basis of linear theory. The boundaries are taken
to be stress-free and perfectly conducting and the horizontal temperature gradient is assumed to be small.
The analysis shows that the critical Rayleigh number is always larger than that for the ordinary Bénard
problem. The preferred mode of disturbance is stationary, and will be a transverse roll (having axes
normal to the basic flow) or a longitudinal roll (having axes aligned in the direction of the basic flow)
depending on whether the Prandtl number is less or larger than 5-1. Finally, some calculations are made
of the converted energy associated with the unstable perturbations, indicating that the mechanism of
instability is of thermal (convective) origin.

NOMENCLATURE
d, depth of layer;
k, m, wave numbers in the x and :z
direction;
i,j,k, unit vectors;
v, velocity vector;
u,v,w, velocity components;
t, time ;
U(y), basic flow velocity ;
P, pressure;
P(x, y), basic flow pressure;
T, temperature;
Ty, standard temperature;
AT, temperature difference between lower
and upper plane;
V2, Laplacian operator;
L, operator defined by (4.3);
K, I, defined by (5.2)and (5.6), respectively ;
Pr, Prandtl number v/x;
Ra, Rayleigh number gaATd> /v

(g =acceleration of gravity,
& =coefficient of volume expansion).

Greek letters
o, overall wave number ;
i horizontal temperature gradient ;
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0, O, temperatures;
K, thermal diffusivity ;
v, kinematic viscosity ;
o, density;
Pos standard density ;
o, amplification factor of disturbance;
I defined by (4.9) and (4.27), respec-
tively.
Superscripts

non-dimensional quantities ;
perturbation quantities.

3

1. INTRODUCTION
THERMAL convection in thin, horizontal fluid
layers uniformly heated from below is quite well
described in the literature (the Bénard problem);
see the review article by Brindley [1] for
references. In many practical problems, however,
non-uniformly heating may occur, and thus the
layer will be subjected to horizontal as well as
vertical temperature variations. Few theoretical
attempts have been made to analyse the stability
of thin layers under such conditions. Zierep [2]
has approached the problem by investigating a
model with a discontinuous jump in the bottom
temperature. Further, Koschmieder [3] has
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performed a laboratory experiment on con-
vection between circular planes, the upper at
constant temperature, the lower non-uniformly
heated. At subcritical conditions a density
gradient roll was observed, breaking up into
axially symmetric rolls of different sizes and
rotation when the vertical temperature difference
was sufficiently increased. Theoretically Miiller
[4] has given a two-dimensional linear analysis
of this problem. A closely similar experiment
in a rectangular cavity has been reported by
Berkovsky and Fertman [5].

In the present paper we investigate the effect
of horizontal temperature variation on ordinary
Bénard convection, assuming that the fluid is
unlimited in the lateral directions. Due to the
horizontal density gradient thus produced, a
shear flow develops, and when the temperature
difference between the bottom and top plane
exceeds a certain critical value, this flow becomes
unstable.

It is well known that in the absence of shear,
a non-linear analysis must be applied to obtain
the final flow structure, being two-dimensional
rolls if the fluid properties are constant (Schliiter
et al. [6]), or hexagons if the properties vary with
temperature (Palm [7], Segel and Stuart [8],
Busse [9]).

In stability problems involving a basic flow,
a preferred direction is introduced into the
system, and a unique flow pattern may be
predicted from linear theory (Liang and Acrivos
[10]). The selected type of disturbance will
depend on the instability mechanisms involved.
For non-stratified shear flows, the mechanism
is purely hydrodynamical, and by Squire’s
theorem it can be proved that instability first
occurs for rolls having axes normal to the mean
flow (transverse rolls). For shear flow with
unstable vertical stratification due to heating
from below, the instability will be of thermal
origin if the basic flow Reynolds number is
sufficiently small, and then rolls having axes
aligned in the direction of the mean flow
(longitudinal rolls) will be preferred [10-12].

In the present problem we shall assume a
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small horizontal temperature variation which
implies a small basic flow velocity. For moderate
(or large) Prandtl numbers then, the hydro-
dynamical instability mechanism will not
seriously affect the problem- and thermal instabi-
lity will dominate. Hence longitudinal rolls
would be expected. It is therefore a little sur-
prising, at least to the author, that the final flow
pattern may be transverse or longitudinal rolls
depending on whether the Prandtl number is
smaller or larger than 5-1.

The reason for this, however, is purely of
thermal origin. This is indicated in the last part
of the paper where we consider the conversion
of energy between the mean flow and the
perturbation. There we show that the horizontal
transfer of vertical momentum cannot account
for the change of mode about Pr = 5-1, while the
release of potential energy may do so.

2. BASIC FLOW

Consider natural three-dimentional con-
vection of a viscous fluid confined between
horizontal planes, see Fig. 1. For mathematical
simplicity we shall assume the planes to be
stress-free and perfectly conducting, and the
lateral temperature variation to be linear in the
x-direction. For a given x-coordinate, the
temperature difference between the planes is
constant, AT, and the lower plane is the warmer.
We then may write T= T, — AT/2 — fix and
T=T, + AT/2 — fx at the top and bottom
plane, respectively, where f§ is a positive con-
stant.

To avoid infinite temperatures on the
boundaries, we must limit the model in the
x-direction, but we assume that the ratio of the
depth to the characteristic horizontal dimension
is so small that the lateral boundaries will not
affect the motion.

Introducing non-dimensional (primed) quan-
tities by

t =t —

(X, V. Z) = (xrs y’* Z’)d’ K
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3
Y
T=To-AT/2 - BX

d —=> X

T=To+AT/2 - BX

F1G. 1. The coordinate system

K
(u, v, w) = (W, v, w)-, p=r p_;z_v

a8l R

T— T, = T'AT

and making the Boussinesq approximation, we
write the governing equations in vector notation

d
Pr”l(a—:—&— v.Vv)

0~T+0,VT
ot

—Vp + V¥ + RaTj (2.1)

viT

i

(2.2)

V.o=0 (2.3)

where the primes have been dropped.
We now consider a particular solution of
these equations. Setting

Fri v=w=0
u= U(y) (2.4)
T=T(y)~ Bx

where f# now is dimensionless, and eliminating
the pressure from (2.1), the governing equations
reduce to

D*U(y) = — BRa
D2*T(y)= — BU (2.5)
where
d
D= &
These are subject to the boundary conditions
DU(+3) = T(+3) = F3 (2.6)
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and to the continuity condition

+3
J} U(y)dy = 0. 2.7

The solution of this system is easily obtained,
being

3

1 y_y
Uly) = EﬂRa (Z - ’5>

Vo (Y ys)
=%l R“(% 2 T )T
For sufficiently large values of Ra (or f), the
solution (2.8) may become unstable, and this
possibility is investigated in the next sections.

It is worth pointing out that this type of flow
is solely caused by a horizontal density gradient,
and exists even when no vertical temperature
difference is present (AT = 0). This is easily seen

by writing (2.8) in dimensional form, setting
AT=0.

T(y) (2.8)

3. STABILITY ANALYSIS

Following the usual approach of linear
stability theory, infinitesimal perturbations (de-
noted by carets) are introduced into the govern-
ing equations. Setting

u=Uy)+ x,y,z.t), v = 8x,y,z1),
w=wx,y,z1t)

0 =T(y) -
p = P(x,y) + p(x, y,2.t)

3.1
fx + o(x, .z, t),

and neglecting the non-linear terms, we obtain:

0 19
Pr- ( Y. U(y)—+vDU(y))=——~p+V2u
ot 0x

2
Pr- (” U()@i>— Zp-f—Vzv—f—Ra(-) (3.2)

pr- <6w ()——)= ZP+V2
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where the carets have been dropped.
We assume solutions of the form

u u(y)
e fvgg exp ik + mz —ot)  (3.5)
0 0(y)

for the system (3.2)+3.4), where the real part is
considered to have physical significance. The
wave numbers, k and m, are real and the growth
rate o(=o¢" + ic') is complex. Eliminating the
pressure from (3.2), and utilizing (3.5), we
finally obtain

{Pr(D? — o?) — ikpRaU + i} (D? — o?)

x v + ikBRaD?*Uv — a?PrRaf =0  (3.6)
{D? — «® — ikfRaU + ic} 0 + Pu
+ v~ B*RavDO =0 (3.7)
{Pr(D? — «*) — ikfRaU + io}
x (— a?u + ikDv) + m?BRaDUv =0  (3.8)
subject to the boundary conditions
v=D*=Du=60=0 for y=+3
(3.9)

(for a more detailed derivation of these con-
ditions, see [13]). Here « is the overall wave
number defined by a? = k? + m?. Furthermore,
we have introduced

U=@=1<X_ﬁ>

=BRa 2 3

~ Ty +y 1/(9 ) ys)
@‘W‘zcx(so}’ 7 t3) 310

Equation (3.6) is the Orr-Somerfeld equation
which is coupled with the energy equation (3.7).
Equation (3.8) is the vertical component of the
vorticity equation combined with the equation
of continuity. Except for the last equation, this
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set has much in common with the one treated
by Gill and Davey [14].

4. METHOD OF SOLUTION

To simplify the problem, we shall assume that
f is small. Then the equations (3.6)-3.8) may be
solved by a perturbation technique using § as a
small perturbation quantity. This is a method
similar to that introduced in [10]. The solutions
are expanded into the form

(u,l),e,k,m,O',Ra) = (u0a1705609k01m0s60R0)
+ Buyv,,00.kym,00,.Ry) (4.1)
+ BHuy,05,0,.ky,my,6,,R,) +

where R, k, m, i=0, 1, 2, 3..... are real
quantities and u;, v, 0, o; generally are complex.

The different orders are obtained by in-
serting these expressions into (3.6)~3.8), equat-
ing equal powers of f§ and utilizing the solvability
condition. For this procedure to be valid, the
Prandtl number must be a zeroth-order
quantity.

The zeroth-order system corresponds to
thermal convection without shear (the Bénard
problem), and the equations are
{Pr(D? — &) + g} (D? — a@)vy — a2PrR,0,

=0
{D? — a2 + icg} 0y + vy
=0 4.2)
—aguy + ikoDu,
=0.
It is well known [13] that the principle of
exchange of stabilities is valid for this system.
Hence ¢ = 0. At the neutral state (o}, = 0),
the governing equation may be stated
L(ve) = {(D? — a2)® + adRo} vg = 0. 4.3)
From (3.9) and (4.2) the boundary con-
ditions may be written.

vy = D?vg = D*vy =0, y=+% (4.4)
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The solutions are readily obtained, being

vo=Acosmy

2k
Ug = -—i—?oA sin y 4.5)

2
0y = WAcosny

and

7.52

27
R, =4—n4fortx(z, = k3 + m} =3

The amplitude 4, which can not be deter-
mined from the linear, homogeneous system,
may be equated to unity without loss of gener-
ality.

Next, for the first-order equations we obtain
Pr(D? —a2)*v; —a2PrRy9,
= {2(Pr(D? — )
+ ikoR(U(D? —a3) — D20)
—ioy(D? ~ ad)} v, + {EPrR, + «3PrR,} 6,

(4.6)
(D? - ad) 0, + vy = {& + ikoRoU — ic,}
x 0y — ug 4.7)
Pr(D? — a3) {— odu, + ikoDv,}
= — Pr(D? — o) (— &uy + ik,Du,)
—miR,DUv,  (4.8)
where
é = 2(k0k1 + moml). (4.9)

Eliminating 6, from (4.6) by using (4.7), we
finally get

Pri{v,) = {2EPr(D? — a)? + ikoRy(D? — o)
x [UD? — a@) — D2U] — ig(D? — a?)*}v,
+ {EPrRo(D? — a2) + a3 PrR(D? — o)
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+ a2PrRo¢ + ikqa3PrRIU — io (aZPrR,)}
X 00 - aéPrRouo (410)
subject to the boundary conditions
v, =D%,; =D%, =% y=+1. (@411

The operator L has been defined by (4.3).
Under the present conditions, Lis easily seen
to be self-adjoint. Then a necessary condition
for (4.10) to have a solution is that the right hand
side be orthogonal to v,,.
Defining the inner-product

+4
rgd = _Iifg dy (4.12)

the condition for solvability may be stated as

{L{v,),v9y =0. (4.13)
From (4.13) we obtain
2

R, = - ialng(l + Pr Y. 4.14)

Since R, must be purely real, this equation gives
at the marginal state (g = 0)

o1 =0

R, =0. (4.15)

Thus we have no oscillatory instability to first
order. Concerning the Rayleigh number, it is
clear from physical considerations that Ra
generally can not contain any term involving
odd powers of §, since the only effect of changing
sign in B, is to reverse the basic velocity, which
of course can not alter the stability conditions.
Hence

Ryi1 =0, n=0,1,2,...... (4.16)

For the sake of simplicity, we shall represent
the basic velocity by a sine-profile, which is
indeed a good approximation. This may be seen
from Table 1, where the difference between
the sine-profile U, = 4, sin = y and the exact
profile U, = % (y/4 — y3/3) is given in per cent
for several values of y.
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Table 1. Difference between U,and U,

¥ 0 01 02 03 04 05
Difference in %, 0 42 34 21 07 0

Throughout the remainder of this analysis,
we then take as basic velocity

U = RGinmy. 4.17)

24

The corresponding basic temperature is ob-
tained from (2.5), being

B*Ra

W ="

y = 6(y) —
(4.18)

Introducing U = U/BRa and & = &/f*Ra into
(4.10) and utilizing R; = ¢, = 0, we get
L(vy) = ikoRg (& n*(1 + Pr%) sin 2ny

(—y+1% sin ny) —

+ 7 sin 7y} 4.19)

with boundary conditions v, = D?v; = D*p, =

Setting

vl == ikoRogszﬂ“(l + Pr_1)51 + ikORon'él,
(4.20)

#, is immediately obtained, while ¥, is found

most conveniently by Galerkin’s method, giving

¥, = ZAZ" sin 2nmy

n=1

@21)

where
64n(— 1)

Am = T DB + 1 = 27]

The solution of (4.19) may then be written

, = ikg {— 133 64(1 + Pr™1) sin 2ry + nRy0,}.
422)

From {4.7) and (4.8) we now obtain the solutions
for 8, and u,, namely,
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. 7+ Pr 1)
0, = ’k"{“ 3239
4 sinh(my/\/2)

A 373 sinh(n/2,/2)

sin 2 ny

4
1} - Wﬁ cos my (4.23)

where

0, = z sin 2nmy

n=1

A2n
8+ 1

and

u = 3 § Pt
1= ™M1316 07 Ty Mo

—l)kz
242 4i
x cos 2my ~ ~T~r—°—R0Di‘71 + E;

I . OgPr1
X{kgg’—“z‘ki} sin 7y — —~ mg.
Here 7, is defined by (4.21).

To determine R, and g,, we must apply the
solvability condition to the second-order equa-
tions. These are given by
Pr{(D? — a2)?v, — adRy0,} = {2Pr&(D? ~ of)

+ ikoRo[U(D? — a3) ~ D?U}v, + EPrRy0,
+ {2Pr{(D? — o3) — Pré? + ik, R,
x [U(D? ~ 02) —~ D*U] ~ ikofRU

— io(D? — ad)}v, + {{PrR, + a3 PrR,}6,

4.24)

(4.25)
and
(D? — a3)0, + v, = (€ + ikgR,U)8; — 1,
+ (ikyRoU + £ — i63)8, + RoDBv,y, (4.26)
where
{ =k} + 2koky + mi + 2mgm, . 4.27)

The equation for u, is not relevant for the present
purpose, and is thus not stated.
We now multiply (4.25) and (4.26) by (D? ~
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a2) and aZ PrR,, respectively, summing and take
the innerproduct with »,. The solvability con-
dition for this system is then expressed by

{Lfvy), 00> = 0. (4.28)
After some algebra we obtain from (4.28)
3, R, 81n*
= 2R, + —2 |8 — 8.1 o
Ra=16" °+4.13[ 81321 + 1632
4 3gpt 21n*
_ P -1 P -2 2
+(3 * 64) TR }k"
7 -
+ —3R0Pr Ymg + 36(kok; + mgm,)? (4.29)
9 2
o, (14 PrY),
2
where
i 2.27.64n%
5,=Y " (4.30)

LS (a2 —1P[(8n? +1)° —27]

This series converges very rapidly, giving
approximately

X, =5-63.10"3 (4.31)

At the neutral state, ¢, must be real. Since R,
is real, the real and imaginary parts of equation
(4.29) reduce, respectively, to

3 1
R, =122 . — 8.
2 1671 Ro+4.13R0[8 8.13%,
81n* 4 3,
— _ — P -1
+16.32+<3+64n> ’
2in* 7
Pr2liz 4+t -1,.2
+16.32 r ]k0+3R0Pr mg
+ 36(kok, + mgm,)? (4.32)
and
On? _
0’2—2~(1+Pr )= 0. (4.33)

The last relation implies that ¢, = 0 at the
marginal state, and hence we have no oscillatory
instability to second order.

From (4.32) we immediately conclude that
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R, is positive and greater than zero for all kinds
of disturbances, which means that the onset of
convection in the present problem will occur
for a Rayleigh number larger than the critical
value corresponding to the Bénard problem.
This is to be expected since the basic flow
convects warmer fluid in the upper part of the
layer and colder in the lower part, thus opposing
the destabilizing effect of the temperature
difference between the lower and upper plane.
The preferred mode of disturbance will make
R, a minimum. If we introduce h = mqy/k, and
utilize k3 + m3 = n2/2, R, may be written

R,(h) = 3/167°Ry + {A(Pr~ 1, Pr~?)+ B(Pr™ 1)
2

X h2 + 36(k1 + mlh)z} m
where the expressions for A and B easily follow
from (4.32).

It is then seen that R, has an absolute mini-
mum either for h = 0, k; = 0 (transverse rolls)
or h = oo, my; = 0 (longitudinal rolls) depending
on the values of 4 and B, i.e. the Prandtl number.

In Fig. 2, R, is displayed for the two kinds of

(4.34)

5000 . —
aoook 4
R,
3000+ .

Transverse rotl

Z

Longitudinal roll

2000 |-
1 L
0 3 10 15

Pr

FiG. 2. R, = (Ra — R,)/B*> vs Pr for transverse and
longitudinal rolls.
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rolls, and we observe that for Pr < 51 trans-
verserolls are preferred, while we get longitudinal
rolls when Pr > 5-1.

It should be noted that formally (4.32) also
gives one more point of intersection between
the transverse and longitudinal roll curves,
namely for Pr = 0-03. Whether this reflects any
real change of mode, however, is doubtful, since
our perturbation method is not supposed to be
valid at such a small Prandtl number. In fact, we
suggest that the tendency to select transverse
rolls will be strengthened at small Pr by the
increased importance of shear on the mechanism
of instability.

When Pr increases towards infinity, the
critical Rayleigh number assumes the asymp-
totic value

Ra = Ry(1 + 1—36n2ﬁ2) +0(BY). (435

5. EXCHANGE OF ENERGY BETWEEN THE MEAN
FLOW AND THE PERTURBATION

In this section we shall be concerned with the
perturbation energy. Taking the real parts of
the component equations in (3.2), multiplying
by the real parts of u, v and w, respectively,
averaging over a wavelength in the x- and :z-
direction, adding, and integrating from y = —3
to y = +%, using the boundary conditions, we
finally obtain the familiar equation for the
kinetic energy of the perturbation

G2 + % + w? = — (DU

-
2l

+ PrRalv@) — Pr{(Vu)® + (Vo)

+ (Vw)® (5.1)
where the bars and the brackets denote mean
and vertical integrations, respectively.

Here the term —<{DU uv) represents the
conversion of kinetic energy between the per-
turbation and the mean flow through vertical
transfer of horizontal momentum, while the
second and third term on the right represent

conversion of potential energy to kinetic energy
and viscous dissipation, respectively.
We define

= — (DU . (52)

Here uv = ${w'(yW'(y) + u'(yW'(y)] where the
superscripts r and i denote real and imaginary
parts of the velocities defined by (3.5).

We will consider the marginal stable solutions.
Since the solution denoted by subscript zero
corresponds to pure convection, it is obvious
that u,v, = 0. The lowest order contribution to
the Reynolds stresses is then given by

uv = Pugvo + Uovy) + O(%).  (53)

For the expression (5.2) we then obtain to
second order

K = —36(1-6 + Pr-1)p? (5.4)

and

K = 1981 Pr~1p? (5.5)

for transverse and longitudinal rolls, respectively.
Accordingly, transverse rolls always lose kinetic
energy to the mean flow, while longitudinal rolls
always gain energy. Similar results were obtained
by Asai [15] for convection in Couette flow,
from which it was concluded that longitudinal
rolls were preferred.

In the present problem a similar conclusion
is obviously incorrect. The fastest growing mode
will depend on the conversion of potential
energy as well as viscous dissipation. This
dependence will not fully be explored in this
paper. At large Prandtl numbers, however, it is
immediately clear from the equation for the
kinetic energy (5.1) that the processes mentioned
above will dominate. For Pr of about unity, we
shall consider one important second order term
of the released potential energy.

We define
1
P= PrRz %<0000>B2 = —61[—2 PrRzﬁz (56)

where R, is given by (4.32).



THERMAL CONVECTION BETWEEN HEATED PLANES

From the graph of R, in Fig. 2 it follows that
the value of P for transverse rolls will be less
than its value for longitudinal rolls when Pr
is less than five, while for Pr greater than five
the opposite is true. Further it can be shown that
for Pr = 5 the release of potential energy (P)
for a longitudinal roll is about six times larger
than the energy converted from the mean flow
through vertical momentum transfer. This indi-
cates that the process of conversion of potential
energy will dominate for Pr about unity, and
may account for the change of mode at Pr = 5-1.
Since we consider marginally stable solutions,
the left hand side of (5.1) is zero. To satisfy this
condition, the viscous dissipation must also be
important for Pr of about unity.

6. SUMMARY AND DISCUSSION

When the Prandtl number is less than 51,
we find that the Rayleigh number at the neutral
state has a minimum for steady, transverse rolls,
i.e. rolls with axes normal to the mean flow. For
Prandtl numbers greater than 51, the Rayleigh
number is smallest for steady, longitudinal rolls
having axes aligned in the direction of the mean
flow.

Our conclusions are, in some respects, similar
to those reached by Liang and Acrivos [10] for
convection in a tilted slot. As in the present case,
the neutral state remains stationary for all
disturbance wave numbers, i.e. the principle of
exchange of stabilities applies, and the critical
Rayleigh number decreases with increasing Pr
to an asymptotic value independent of Pr. In
the present problem this limit is given by (4.35).

Two important differences may be noted,
however. In [10] the most unstable mode was
found to be a longitudinal roll, and the critical
Rayleigh number the same as for pure con-
vection without shear. In our case, the most
unstable mode may be either transverse or
longitudinal depending on whether Pr is smaller
than 5-1 or not. The critical Rayleigh number
will always be larger than that corresponding
to convection without horizontal density
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gradients. Physically this is due to the upward
convection of warm fluid and downward con-
vection of cold fluid in the basic flow.

The last section has been devoted to energy
considerations. We have shown that, analogous
to [15], a longitudinal roll always gains kinetic
energy from the mean flow through vertical
transfer of horizontal momentum, while a
transverseroll always loses energy by this process.
This does not explain the change of mode at
Pr = 51 in the present problem. By computing
one particular term in the released potential
energy, it is indicated that the mechanism of
instability is primarily of convective origin.
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CONVECTION THFRMIQUE ENTRE DES PLANS CHAUFFES NON UNIFORMEMENT

Résumé—On a étudié sur la base d’une théorie linéaire la stabilit¢ de la convection naturelle dans une
mince couche horizontale soumise & des gradients de température aussi bien horizontaux que verticaux.
Les limites sont sans contrainte et parfaitement conductrices et le gradient de température horizontal est
supposé petit. L’analyse montre que le nombre critique de Rayleigh est toujours plus grand que celui du
probléme classique de Bénard. Le mode préféré de perturbation est stationnaire et sera un rouleau trans-
versal (avec axe normal a I'écoulement fondamental) ou un rouleau longitudinal (avec un axe dans la
direction de I'écoulement fondamental) selon que le nombre de Prandtl est inférieur ou supérieur a 35,1.
Finalement, on a fait quelques calculs sur I’énergie convertie associée aux perturbations instables et qui
indiquent que le mécanisme d’instabilité est d’origine thermique (par convection).

UBER THERMISCHE KONVEKTION ZWISCHEN UNGLEICHMASSIG BEHEIZTEN PLATTEN

Zusammenfassung—Die Stabilitat der natiirlichen Konvektion in einer diinnen, horizontalen Schicht,
die sowohl vom horizontalen als auch vom vertikalen Temperaturgradienten abhingig ist, wird auf der
Basis der linearen Theorie untersucht.

Die Grenzen werden so gewiihlt, dass sie spannungsfrei und vollkommen leitend sind; vom horizontalen
Temperaturgradienten wird vorausgesetzt, dass er klein ist. Die Analyse zeigt. dass die kritische Rayleigh-
Zahl immer grosser ist als die fir das gewohnliche Benard-Problem. Die bevorzugte Stérungsart ist
stationdr; sie wird ein Querwirbel (Achsen senkrecht zur Grundstromung) oder ein Lingswirbel (Achsen
in Richtung der Grundstrémung) sein, je nach dem die Prandt-Zahl kleiner oder grésser 5,1 ist. Schliesslich
werden einige Berechnungen fur die iibertragene Energie angestellt, die mit den instabilen Stérungen
verkniipft ist. Das gibt den Hinweis, dass der Mechanismus der Instabilitit von thermischem (konvektivem)

Ursprung ist.

O ROHBERUIHN TEILIA MEHAY HEPABHOMEPHO HATPEBAEMBLIMI
HTOCROCTAMHU

Anporamusa—Iia ocHOBC JNuHeHHOE Teopuu mccilexveTca  YCTOHYMBOCTL  €CTeCTBeHHOI
KOHBEKILHH B TOHKOM TOPU30HTAJIBHOM CJI0€, HIOABEPTacMOM BO3)IeICTBUI0 TOPU30HTAJIbLHBIX,
a TaKyKe BePTHKATIBHLIX TPALCHTOB TeMmeparypsl. lIpunaTo, uTo HanpsAsKeHe Ha TpaHuIax
OTCYTCTBYyeT, TpaHuubl O0NaJTaI0T COBEPIISHHOH TeNJIONPOBOAHOCTDIO U TOPU3OHTABHBIN
TeMIIepaTypHHil rpaguenT Mal. IIyTém aHan3a nokasaHo, UTO KPUTHYECKOE 3HAYeHHe YHcIa
Penen Bcerjga Gouabiiie 3HaYeHUA JaA o0blMHOI 3apavn Bewapua. I3 cnocofoB BosMyiieHHA
BBIGpAH CTAUMOHADHBLL, I B 33BUCUMOCTH OT TOro, Gombllue UMt MeHsIle 5,1 aHaveHe yucIa
Tlpanarsasa, UCTOYHUKOM BO3MYMIIEHHS CHy7HAT NONepedHble (€ OCAMU, PacHOJOAeHHBIMI
TepHeHIHKYIAPHO K OCHOBHOMY HOTOKY) 1LJIH NPOJONbHLIE BUXPU (C 0CAMI, HATIPABISHHBIMII
BX0.1b OCHOBHOIr0 NoTOKa). HaKkoHell, BbIMIOJIHEHBLL HEKOTOPLIE PACUETH 0HpUleHHOIl DHeprul,
CBA3AHHOIl € HeYCTOHYMBBIMH BO3IMVIUEHMAMIU, KOTOPBIE [1OKABBIBAIOT, YTO MeEX3HI3M
HEYCTOWYHBOCTH HMeeT TepMHUUecKoe {KOHBCKTHBHOP) MpPOUCXOMKIPHIUE,



